Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; 10(1): e0153221, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1607174

ABSTRACT

COVID-19 vaccination has proven to be effective at preventing symptomatic disease but there are scarce data to fully understand whether vaccinated individuals can still behave as SARS-CoV-2 transmission vectors. Based on viral genome sequencing and detailed epidemiological interviews, we report a nosocomial transmission event involving two vaccinated health care-workers (HCWs) and four patients, one of them with fatal outcome. Strict transmission control measures, as during the prevaccination period, must be kept between HCWs and HCWs-patients in nosocomial settings. IMPORTANCE COVID-19 vaccination has proven to be effective at preventing symptomatic disease. Although some transmission events involving vaccinated cases have also been reported, scarce information is still available to fully understand whether vaccinated individuals may still behave as vectors in SARS-CoV-2 transmission events. Here, we report a SARS-CoV-2 nosocomial transmission event, supported on whole genome sequencing, in early March 2021 involving two vaccinated HCWs and four patients in our institution. Strict transmission control measures between HCWs and HCWs - patients in nosocomial settings must not be relaxed, and should be kept as strictly as during the prevaccination period.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Infection/transmission , SARS-CoV-2/immunology , COVID-19/transmission , COVID-19/virology , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/virology , Health Personnel/statistics & numerical data , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Vaccination , Whole Genome Sequencing
2.
mSphere ; 6(4): e0038921, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1341306

ABSTRACT

SARS-CoV-2 nosocomial outbreaks in the first COVID-19 wave were likely associated with a shortage of personal protective equipment and scarce indications on control measures. Having covered these limitations, updates on current SARS-CoV-2 nosocomial outbreaks are required. We carried out an in-depth analysis of a 27-day nosocomial outbreak in a gastroenterology ward in our hospital, potentially involving 15 patients and 3 health care workers. Patients had stayed in one of three neighboring rooms in the ward. The severity of the infections in six of the cases and a high fatality rate made the clinicians suspect the possible involvement of a single virulent strain persisting in those rooms. Whole-genome sequencing (WGS) of the strains from 12 patients and 1 health care worker revealed an unexpected complexity. Five different SARS-CoV-2 strains were identified, two infecting a single patient each, ruling out their relationship with the outbreak; the remaining three strains were involved in three independent, overlapping, limited transmission clusters with three, three, and five cases. Whole-genome sequencing was key to understand the complexity of this outbreak. IMPORTANCE We report a complex epidemiological scenario of a nosocomial COVID-19 outbreak in the second wave, based on WGS analysis. Initially, standard epidemiological findings led to the assumption of a homogeneous outbreak caused by a single SARS-CoV-2 strain. The discriminatory power of WGS offered a strikingly different perspective consisting of five introductions of different strains, with only half of them causing secondary cases in three independent overlapping clusters. Our study exemplifies how complex the SARS-CoV-2 transmission in the nosocomial setting during the second COVID-19 wave occurred and leads to extending the analysis of outbreaks beyond the initial epidemiological assumptions.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/transmission , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , COVID-19/virology , Cross Infection/virology , Disease Outbreaks/prevention & control , Female , Genome, Viral/genetics , Health Personnel , Hospitals , Humans , Male , Middle Aged , Phylogeny , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL